2011 Hawaii Paper

Design of Low-Sweep Wings for Maximum Range

Timothy M. Leung and David W. Zingg
Institute for Aerospace Studies, University of Toronto, Toronto, Ontario, M3H 5T6, Canada

Presented as AIAA Paper 2011-3178 at the 20th AIAA Computational Fluid Dynamics Conference, Hawaii, June 2011.

Abstact: An efficient Newton-Krylov algorithm for high- fidelity aerodynamic shape optimization is used to design low-sweep wings for maximum range at transonic speeds. In this approach, the steady flow solution is obtained using the Newton method with pseudo-transient continuation. The objective function gradient is computed using the discrete-adjoint method.  Linear systems from both the flow and adjoint systems are solved using a preconditioned Krylov method. A quasi-Newton optimizer is used to nd the search direction. It is coupled with a line-search algorithm. Our single-point optimization results show that it is possible to design shock-free unswept wings at Mach numbers and lift coecients comparable to the operating conditions of modern transonic transport aircraft. Robust wing designs for low-sweep and unswept wings under the same operating conditions are obtained through multi-point optimization.

Download Icon